Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2.

Identifieur interne : 000854 ( Main/Exploration ); précédent : 000853; suivant : 000855

Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2.

Auteurs : Haoran Li [États-Unis] ; Daphne T. Mapolelo ; Sajini Randeniya ; Michael K. Johnson ; Caryn E. Outten

Source :

RBID : pubmed:22309771

Descripteurs français

English descriptors

Abstract

Human glutaredoxin 3 (Glrx3) is an essential [2Fe-2S]-binding protein with ill-defined roles in immune cell response, embryogenesis, cancer cell growth, and regulation of cardiac hypertrophy. Similar to other members of the CGFS monothiol glutaredoxin (Grx) family, human Glrx3 forms homodimers bridged by two [2Fe-2S] clusters that are ligated by the conserved CGFS motifs and glutathione (GSH). We recently demonstrated that the yeast homologues of human Glrx3 and the yeast BolA-like protein Fra2 form [2Fe-2S]-bridged heterodimers that play a key role in signaling intracellular iron availability. Herein, we provide biophysical and biochemical evidence that the two tandem Grx-like domains in human Glrx3 form similar [2Fe-2S]-bridged complexes with human BolA2. UV-visible absorption and circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic analyses of recombinant [2Fe-2S] Glrx3 homodimers and [2Fe-2S] Glrx3-BolA2 complexes indicate that the Fe-S coordination environments in these complexes are virtually identical to those of the analogous complexes in yeast. Furthermore, we demonstrate that apo BolA2 binds to each Grx domain in the [2Fe-2S] Glrx3 homodimer forming a [2Fe-2S] BolA2-Glrx3 heterotrimer. Taken together, these results suggest that the unusual [2Fe-2S]-bridging Grx-BolA interaction is conserved in higher eukaryotes and may play a role in signaling cellular iron status in humans.

DOI: 10.1021/bi2019089
PubMed: 22309771
PubMed Central: PMC3331715


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2.</title>
<author>
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208</wicri:regionArea>
<orgName type="university">Université de Caroline du Sud</orgName>
<placeName>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mapolelo, Daphne T" sort="Mapolelo, Daphne T" uniqKey="Mapolelo D" first="Daphne T" last="Mapolelo">Daphne T. Mapolelo</name>
</author>
<author>
<name sortKey="Randeniya, Sajini" sort="Randeniya, Sajini" uniqKey="Randeniya S" first="Sajini" last="Randeniya">Sajini Randeniya</name>
</author>
<author>
<name sortKey="Johnson, Michael K" sort="Johnson, Michael K" uniqKey="Johnson M" first="Michael K" last="Johnson">Michael K. Johnson</name>
</author>
<author>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22309771</idno>
<idno type="pmid">22309771</idno>
<idno type="doi">10.1021/bi2019089</idno>
<idno type="pmc">PMC3331715</idno>
<idno type="wicri:Area/Main/Corpus">000866</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000866</idno>
<idno type="wicri:Area/Main/Curation">000866</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000866</idno>
<idno type="wicri:Area/Main/Exploration">000866</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2.</title>
<author>
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208</wicri:regionArea>
<orgName type="university">Université de Caroline du Sud</orgName>
<placeName>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mapolelo, Daphne T" sort="Mapolelo, Daphne T" uniqKey="Mapolelo D" first="Daphne T" last="Mapolelo">Daphne T. Mapolelo</name>
</author>
<author>
<name sortKey="Randeniya, Sajini" sort="Randeniya, Sajini" uniqKey="Randeniya S" first="Sajini" last="Randeniya">Sajini Randeniya</name>
</author>
<author>
<name sortKey="Johnson, Michael K" sort="Johnson, Michael K" uniqKey="Johnson M" first="Michael K" last="Johnson">Michael K. Johnson</name>
</author>
<author>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Carrier Proteins (chemistry)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Circular Dichroism (MeSH)</term>
<term>Dimerization (MeSH)</term>
<term>Electron Spin Resonance Spectroscopy (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dichroïsme circulaire (MeSH)</term>
<term>Dimérisation (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Fer (métabolisme)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Protéines de transport (composition chimique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Sites de fixation (MeSH)</term>
<term>Spectroscopie de résonance de spin électronique (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carrier Proteins</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Iron</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Fer</term>
<term>Ferrosulfoprotéines</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Circular Dichroism</term>
<term>Dimerization</term>
<term>Electron Spin Resonance Spectroscopy</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dichroïsme circulaire</term>
<term>Dimérisation</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Sites de fixation</term>
<term>Spectroscopie de résonance de spin électronique</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human glutaredoxin 3 (Glrx3) is an essential [2Fe-2S]-binding protein with ill-defined roles in immune cell response, embryogenesis, cancer cell growth, and regulation of cardiac hypertrophy. Similar to other members of the CGFS monothiol glutaredoxin (Grx) family, human Glrx3 forms homodimers bridged by two [2Fe-2S] clusters that are ligated by the conserved CGFS motifs and glutathione (GSH). We recently demonstrated that the yeast homologues of human Glrx3 and the yeast BolA-like protein Fra2 form [2Fe-2S]-bridged heterodimers that play a key role in signaling intracellular iron availability. Herein, we provide biophysical and biochemical evidence that the two tandem Grx-like domains in human Glrx3 form similar [2Fe-2S]-bridged complexes with human BolA2. UV-visible absorption and circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic analyses of recombinant [2Fe-2S] Glrx3 homodimers and [2Fe-2S] Glrx3-BolA2 complexes indicate that the Fe-S coordination environments in these complexes are virtually identical to those of the analogous complexes in yeast. Furthermore, we demonstrate that apo BolA2 binds to each Grx domain in the [2Fe-2S] Glrx3 homodimer forming a [2Fe-2S] BolA2-Glrx3 heterotrimer. Taken together, these results suggest that the unusual [2Fe-2S]-bridging Grx-BolA interaction is conserved in higher eukaryotes and may play a role in signaling cellular iron status in humans.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22309771</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>05</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>51</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2012</Year>
<Month>Feb</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2.</ArticleTitle>
<Pagination>
<MedlinePgn>1687-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/bi2019089</ELocationID>
<Abstract>
<AbstractText>Human glutaredoxin 3 (Glrx3) is an essential [2Fe-2S]-binding protein with ill-defined roles in immune cell response, embryogenesis, cancer cell growth, and regulation of cardiac hypertrophy. Similar to other members of the CGFS monothiol glutaredoxin (Grx) family, human Glrx3 forms homodimers bridged by two [2Fe-2S] clusters that are ligated by the conserved CGFS motifs and glutathione (GSH). We recently demonstrated that the yeast homologues of human Glrx3 and the yeast BolA-like protein Fra2 form [2Fe-2S]-bridged heterodimers that play a key role in signaling intracellular iron availability. Herein, we provide biophysical and biochemical evidence that the two tandem Grx-like domains in human Glrx3 form similar [2Fe-2S]-bridged complexes with human BolA2. UV-visible absorption and circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic analyses of recombinant [2Fe-2S] Glrx3 homodimers and [2Fe-2S] Glrx3-BolA2 complexes indicate that the Fe-S coordination environments in these complexes are virtually identical to those of the analogous complexes in yeast. Furthermore, we demonstrate that apo BolA2 binds to each Grx domain in the [2Fe-2S] Glrx3 homodimer forming a [2Fe-2S] BolA2-Glrx3 heterotrimer. Taken together, these results suggest that the unusual [2Fe-2S]-bridging Grx-BolA interaction is conserved in higher eukaryotes and may play a role in signaling cellular iron status in humans.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Haoran</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mapolelo</LastName>
<ForeName>Daphne T</ForeName>
<Initials>DT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Randeniya</LastName>
<ForeName>Sajini</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Michael K</ForeName>
<Initials>MK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Outten</LastName>
<ForeName>Caryn E</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ES13780</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM062524</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K22 ES013780-03</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K22 ES013780</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM062524-12</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM62524</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 GM062524</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C404105">GLRX3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004578" MajorTopicYN="N">Electron Spin Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22309771</ArticleId>
<ArticleId IdType="doi">10.1021/bi2019089</ArticleId>
<ArticleId IdType="pmc">PMC3331715</ArticleId>
<ArticleId IdType="mid">NIHMS356099</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2011 Jan;121(1):212-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21123948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 May 6;408(2):329-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21513700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Jul;278(14):2525-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21575136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Oct 7;89(4):486-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21944046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Oct 18;50(41):8957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 21;275(3):1902-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10636891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Mar 16;269(2):451-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10708574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2003 Feb;8(3):318-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2004 Feb;13(2):545-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12519-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14726526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Apr 21;126(15):4788-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15080677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2004 Aug 15;331(2):370-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15265744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1983 Jun;131(2):373-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6614472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1992 Dec 7;1140(2):175-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1280165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Jan 31;579(3):591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15670813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2008 Sep;64(Pt 9):927-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18703840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2008 Oct;317(1-2):61-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18548201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2008 Dec;45(6):796-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18929570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jun 9;48(22):4747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19388667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Epidemiol. 2009 Oct;33(3-4):281-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19797004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Apr 2;394(2):372-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20226171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2010 May;120(5):1749-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20364084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2010 Oct;6(10):758-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 7;286(1):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978135</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Sud</li>
</region>
<settlement>
<li>Columbia (Caroline du Sud)</li>
</settlement>
<orgName>
<li>Université de Caroline du Sud</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Johnson, Michael K" sort="Johnson, Michael K" uniqKey="Johnson M" first="Michael K" last="Johnson">Michael K. Johnson</name>
<name sortKey="Mapolelo, Daphne T" sort="Mapolelo, Daphne T" uniqKey="Mapolelo D" first="Daphne T" last="Mapolelo">Daphne T. Mapolelo</name>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
<name sortKey="Randeniya, Sajini" sort="Randeniya, Sajini" uniqKey="Randeniya S" first="Sajini" last="Randeniya">Sajini Randeniya</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Sud">
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000854 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000854 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22309771
   |texte=   Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22309771" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020